If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-34x-33=0
a = 10; b = -34; c = -33;
Δ = b2-4ac
Δ = -342-4·10·(-33)
Δ = 2476
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2476}=\sqrt{4*619}=\sqrt{4}*\sqrt{619}=2\sqrt{619}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-34)-2\sqrt{619}}{2*10}=\frac{34-2\sqrt{619}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-34)+2\sqrt{619}}{2*10}=\frac{34+2\sqrt{619}}{20} $
| 30-2y-2y=10 | | 3+5x-4=5x+1 | | (2x-1)(x+2)^2=0 | | 97x-37x3=3x-15 | | -3/19+5y=7 | | 7x-11=x+31 | | -3.8-3x=4.0 | | 4(32-7)=65-3(4z-9) | | 3(2x-1)=8x+4-x | | 2x-7=7x2 | | 2/3z+1=1 | | 10p^2-18p+68=0 | | 3x+6=4(x-2)+1 | | 10p^2-9p+34=0 | | 6x+32=44 | | -325+x=77 | | 57=2x+(2x-3)+x | | 88=x-106 | | 144+x=144 | | 0=18x-9x | | -27+15x=-132 | | 135=x-420 | | 11=x-110 | | N^2+n-62=0 | | 2(h+1)=0 | | 2(h+1)=(h+1)(h+1) | | N^2+n-58=0 | | 6c+3=-4c-2 | | 150.25x=225.75 | | 3y^2-4y+2=0 | | 7x(33-18)=105 | | 3x÷5-13=12 |